Class 10 Coordinate Geometry: Notes, Formulas & Solved Examples

Class 10 Coordinate Geometry - Notes, Formulas & Solved Examples

Class 10 coordinate geometry is an important chapter in CBSE Maths that focuses on understanding geometric concepts using algebra. With clear formulas, step-by-step methods, and regular practice, students can score full marks in this chapter. 

This blog provides coordinate geometry notes for Class 10, including important formulas, solved examples, and exam tips to help students prepare confidently. 

What Is Coordinate Geometry? 

Coordinate geometry is a branch of mathematics that studies geometric figures using numbers and algebraic methods. In coordinate geometry class 10, points are represented on a plane using ordered pairs, making it easier to calculate distances, areas, and ratios. 

In class 10 maths coordinate geometry, students learn how algebra helps solve geometry problems accurately and logically. 

Cartesian Plane and Coordinates 

  • X-axis: Horizontal line on the plane 
  • Y-axis: Vertical line on the plane 
  • Origin (0,0): Point where X-axis and Y-axis intersect 
  • Quadrants: 
  • Quadrant I: (+, +) 
  • Quadrant II: (−, +) 
  • Quadrant III: (−, −) 
  • Quadrant IV: (+, −) 

Each point is written as (x, y) where x is the x-coordinate and y is the y-coordinate. 

 

Important Topics in Class 10 Coordinate Geometry 

Class 10 coordinate geometry mainly focuses on formula-based numerical problems that are easy to score with practice. 

Chapter Overview 

  • Distance Formula 
  • Section Formula (Internal & External Division) 
  • Area of Triangle 

These topics form the core of coordinate geometry class 10 questions in CBSE board exams. 

 

Distance Formula (Coordinate Geometry Class 10) 

The distance formula is one of the most important coordinate geometry formulas used to find the distance between two points on a plane. 

Distance Formula 

For points A (x₁, y₁) and B (x₂, y₂): 

Distance= 𝑑=(𝑥2−𝑥1)2+(𝑦2−𝑦1)2√

 

This formula is widely used in coordinate geometry class 10 formulas. 

 

Example (Distance Formula): 

 

Find the distance between A (2, 3) and B (6, 7). 

Step 1: Identify values
x₁ = 2, y₁ = 3
x₂ = 6, y₂ = 7 

Step 2: Apply the formula 

(6−2)2+(7−3)2−−−−−−−−−−−−−−−√=16+16−−−−−−√=32−−√=42–√6−2)2+(7−3)2=16+16=32=42

 

Section Formula (Internal & External Division) 

The section formula helps find the coordinates of a point dividing a line segment in a given ratio. It is a key part of coordinate geometry class 10 formulas. 

Internal Division Formula 

If point P divides AB internally in the ratio m:n: 

P(mx2+nx1m+n,my2+ny1m+n)Pmx2+nx1m+nmy2+ny1m+n

External Division Formula 

If point P divides AB externally in the ratio m:n: 

P(mx2−nx1m−n,my2−ny1m−n)Pmx2−nx1m−nmy2−ny1m−n

 

Solved Example (Section Formula) 

  1. Find the coordinates of a point dividing A(1,2) and B (5,6) internally in the ratio 1:1. 

P(1(5)+1(1)2,1(6)+1(2)2) P1(5)+1(1)21(6)+1(2)2 

= (3,4)  

 

Area of Triangle in Coordinate Geometry 

The area of triangle in coordinate geometry is one of the most important and high-weightage topics in CBSE exams. 

Area of Triangle Formula 

If the vertices of a triangle are A (x₁, y₁), B (x₂, y₂), and C (x₃, y₃), then the area of triangle formula in coordinate geometry is: 

Area =½ |x₁ (y₂ − y₃) + x₂ (y₃ − y₁) + x₃ (y₁ − y₂) | 

 

Condition for Collinearity 

If the area of the triangle is zero, then the three points are collinear (lie on the same straight line). 

 

Solved Example (Area of Triangle) 

Question: Find the area of the triangle with vertices (1,1), (2,4), and (5,3). 

Answers: ½ |1 (4 − 3) + 2 (3 − 1) + 5 (1 − 4) | = ½ |1+4-15| = ½ (10) = 5 Square units 

 

All Coordinate Geometry Formulas – Class 10 

Here is a quick revision list of coordinate geometry formulas: 

 

Distance Formula:

(x2−x1)2+(y2−y1)2−−−−−−−−−−−−−−−−−−−√x2−x1)2+(y2−y1)2

Section Formula:
Internal and External division formulas 

Internal Formula: 

P(mx2+nx1m+n,my2+ny1m+n)Pmx2+nx1m+nmy2+ny1m+n

External Formula: 

P(mx2− nx1m−n,my2−ny1m−n)Pmx2− nx1m−nmy2−ny1m−n

Area of Triangle Formula:

12∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣∣∣12∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣

 

These coordinate geometry class 10 formulas are essential for scoring full marks. 

 

Important Solved Examples – Class 10 Coordinate Geometry 

Coordinate geometry class 10 solutions usually include: 

  • Finding distances between points 
  • Applying section formula for given ratios 
  • Finding the area of triangles 

Practicing these examples helps students understand CBSE question patterns. 

Common Mistakes Students Make 

While preparing class 10 coordinate geometry, students often: 

  • Substitute wrong values in formulas 
  • Confuse distance and section formulas 
  • Make calculation errors 
  • Skip steps in answers 

Avoiding these mistakes improves accuracy and confidence. 

 

How to Score Full Marks in Class 10 Coordinate Geometry 

To score full marks in coordinate geometry class 10: 

  • Memorize all formulas 
  • Practice numericals daily 
  • Write proper steps in exams 
  • Revise formulas before tests 

Personalized academic guidance helps student’s clear doubts quickly and strengthen weak areas. 

 

Frequently Asked Questions (FAQs) – Class 10 Coordinate Geometry 

  1. Is coordinate geometry difficult for Class 10?

A.  No. With regular practice and formula clarity,class 10 coordinate geometry is easy and scoring. 

 2. Which formula is most important in coordinate geometry?

A.  The distance formula, section formula, and area of triangle in coordinate geometry are the most important.

3. How many marks does coordinate geometry carry in Class 10?

A. Coordinate geometry carries significant weightage in CBSE Maths exams.

 4. Is area of triangle important for board exams?

A. Yes. Questions based on the area of triangle formula in coordinate geometry arefrequently  

 5. How can I practice coordinate geometrynumericals? 

A. Practice NCERT questions, solve previous year papers, and revise formulas regularly.

 

Turn Coordinate Geometry into a Scoring Chapter 

Class 10 coordinate geometry becomes a high-scoring chapter when students learn with the right guidance. At Tutoroot, our 1-on-1 personalised sessions help students master concepts, formulas, and solved examples with complete clarity. 

With structured notes, clear explanations, regular practice, and dedicated tutor support, students gain confidence and perform better in exams – without stress. 

👉 Start learning with Tutoroot’s online tuition classes today and boost your CBSE Maths scores. 

 

Leave a Reply

Your email address will not be published.